

# Spatial fisheries management in the Adriatic Sea: DISPLACE model

Fabio Grati<sup>1</sup>, Francois Bastardie<sup>2</sup>, Nedo Vrgoč<sup>3</sup>, Igor Isajlović<sup>3</sup>, Luca Bolognini<sup>1</sup>, Nora Tassetti<sup>1</sup>, Martina Scanu<sup>1</sup>, Francesco Masnadi<sup>1</sup>, Giuseppe Scarcella<sup>1</sup>

<sup>1</sup> Consiglio Nazionale delle Ricerche, Istituto per le Risorse Biologiche e le Biotecnologie Marine, Ancona <sup>2</sup> Technical University of Denmark, National Institute of Aquatic Resources, Copenhagen <sup>3</sup> Institute of Oceanography and Fisheries, Split







## DISPLACE

A spatial model of fisheries to help maritime spatial planning

• A bi-directional model: it combines fishing activities and resource dynamics with very high resolution in time and space.

• An agent-based simulation model: aim to consider the socio-economic processes at the individual scale (e.g., fishing vessel or group of vessels).

With DISPLACE it is possible to simulate spatial restrictions for fisheries and to evaluate the bio-economic consequences of fishing effort displacement.







🐮 DISPLACE

File Graph Creator Graph Editor Parameters Model Utilities Windows

#### o 🗅 🌚 🤲 🐔 🔪 🔂 🖬 🚺 🗙







Pos: 43.9388 14.1278

Used memory: 2199Mb Peak: 2212Mb

\_

 $\times$ 









Spatial planning for fisheries in the Northern Adriatic: working towards viable and sustainable fishing

Francois Bastardie<sup>a</sup>, Silvia Angelini<sup>b</sup>, Luca Bolognini<sup>b</sup>, Federico Fuga<sup>c</sup>, Chiara Manfredi<sup>d</sup>, Michela Martinelli<sup>b</sup>, J. Rasmus Nielsen<sup>a</sup>, Alberto Santojanni<sup>b</sup>, Giuseppe Scarcella<sup>b</sup>, Fabio Grati<sup>b</sup>

<sup>a</sup>Technical University of Denmark, Institute for Aquatic Resources, Section for Management Systems, Charlottenlund Castle, DK-2920, Charlottenlund, Denmark <sup>b</sup>National Research Council, Institute of Marine Sciences, Largo Fiera della

Pesca, 2, Ancona, Italy

<sup>c</sup> Studiofuga, Verona, Italy

<sup>d</sup>University of Bologna, Laboratory of Marine Biology and Fishery, Fano, Italy





Data input (Italian fleet of GSA17):



- fishing areas (VMS for OTB and TBB, model of Stefanos Kavadas for GNS);
- fuel consumption by vessel type (fishing, navigation and neutral) and price;
- landings, CPUE, assessment and market prices for hake, red mullet, common sole and mantis shrimp;
- spatial distribution of the four target species by survey data (MEDITS and SOLEMON).



- 5-year simulation horizon
- 50 replicates (Monte-Carlo simulations)
- A single agent included 4 vessels («super-individuals»)

















#### Redistribution of common sole catches





#### Indicators for Bottom Otter Trawl





Indicators for Rapido Trawl





#### Indicators for Gillnets







#### **NEW INPUT DATA**

- n. vessels (Loa, GT, kW) using OTB, TBB and GNS per harbour in Italy GSA17 and Croatia;
- fishing areas (AIS data for OTB and TBB, model of S. Kavadas + participatory appproach for SSF);
- fuel consumption by vessel type (fishing, navigation and neutral) and price;
- landings, CPUE, assessment (except *N. norvegicus*) and market prices for hake, red mullet, common sole, mantis shrimp, Norway lobster and cuttlefish;
- spatial distribution of the six target species by survey data (MEDITS and SOLEMON).







EUROPEAN UNION

European Regional Development Fund



Possible alternative management measures will be evaluated by testing 6 scenarios:

- Coastal strip 4 mn (ban for trawlers)
- Coastal strip 6 mn (ban for trawlers)
- Pomo Pit (A, B and C zones FRA)
- New Sole sanctuary (ban for trawlers all year round + ban for gillnetters from 1st December to 28th February)
- Decrease of fishing effort by a 10% (fishing days)
- Sole selectivity: increase gillnet mesh size to 72mm and increase MLS to 25 cm TL





<u>Preliminary results</u> (after 5-years simulation horizon)

Simulated stress level categories (<-25%, -25 to 0%, 0 to 25%, >25%) at the fishing harbor communities' scale expressed as proportion of vessels with change in incomes from landings resulting from applying the scenarios



All Year 6nm ban





#### **Preliminary results**

### Redistribution of fishing effort in all scenarios (in relative) compared to the baseline scenario (in absolute)





# Thank you for your attention ....any questions?

