

Decarbonization of marine operations applications of technical and operative decarbonization measures to fishing vessels

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

Europska unija

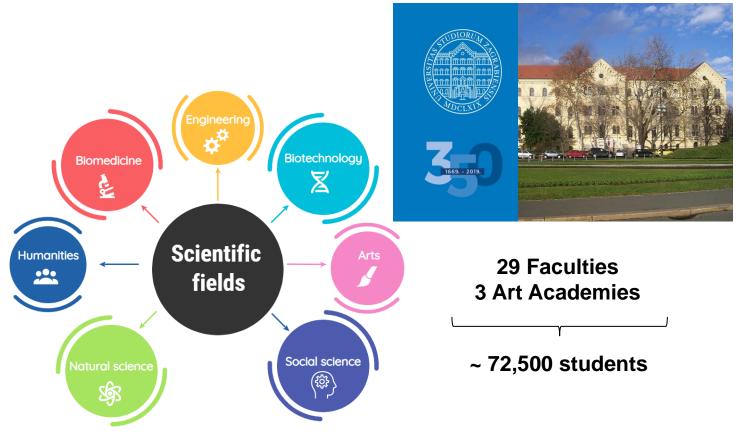
Sufinancirano sredstvima Europske unije iz Europskog fonda za pomorstvo i ribarstvo

Nikola Vladimir, Ph.D.

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture Ivana Lučića 5, 10002 Zagreb, Croatia nikola.vladimir@fsb.hr

GENERAL INFORMATION

General information



University of Zagreb

the oldest and biggest university in South-Eastern Europe (1669) \checkmark

 \checkmark strongly research-oriented institution, contributing with over 50% to the total research output of the country

Academic Ranking of World Universities 2020

Top 1000	Methodology Statistics				
World Rank	Institution*	Ey location Croatia ~	National/Regional Rank	Total Score	Score on Alumni ~
401-500	University of Zagreb		1		0

Faculties of the University of Zagreb

Faculty of Agriculture	Faculty of Kinesiology
Faculty of Architecture	Faculty of Law
Catholic Faculty of Theology	Faculty of Mechanical Engineering and Naval Architecture
Faculty of Civil Engineering	Faculty of Metallurgy
Faculty of Chemical Engineering and Technology	Faculty of Mining, Geology and Petroleum Engineering
Faculty of Croatian Studies	Faculty of Organization and Informatics
Faculty of Economics and Business	Faculty of Pharmacy and Biochemistry
Faculty of Education and Rehabilitation Sciences	Faculty of Philosophy and Religious Studies
Faculty of Electrical Engineering and Computing	Faculty of Political Science
Faculty of Food Technology and Biotechnology	Faculty of Science
Faculty of Forestry and Wood Technology	School of Dental Medicine
Faculty of Geodesy	School of Medicine
Faculty of Geotechnical Engineering	Faculty of Teacher Education
Faculty of Graphic Arts	Faculty of Textile Technology
Faculty of Humanities and Social Science	Faculty of Transport and Traffic Sciences
	Faculty of Veterinary Medicine

Faculty of Mechanical Engineering and Naval Architecture (UNIZAG FSB)

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu 100 Years of Faculty of Mechanical Engineering and Naval Architecture

University of Zagreb

Organizational scheme of UNIZAG FSB	
Organizational scheme of UNIZAGT SD	i

Design

Applied Mechanics

Thermodynamics, Thermal & Process Engineering

IC Engines & Transport System

Energy, Power & Environmental Engineering

Naval Architecture & Offshore Engineering

Industrial Engineering

Quality

Robotics and Production System Automation

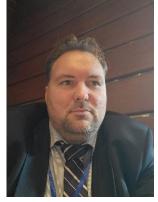
Materials

Welded Structures

Technology

Aeronautical Engineering

Fluid Mechanics


Department of Naval Architecture and Offshore Engineering

Department consists of 5 organizational units and 6 laboratories:

- Chair of Marine Engineering
- Chair of Ship Hydrodynamics
- Chair of Ship Structures
- Chair for Ship Design and Offshore Engineering \checkmark
- Chair of Ship Production Engineering
- Laboratory for the Computer Application in Shipbuilding
- Laboratory of Ship Structures
- Laboratory of Marine Engineering
- Laboratory for the Improvement of Shipbuilding Production
- Laboratory of Ship Hydrodynamics
- Laboratory of Sea Technology

General information

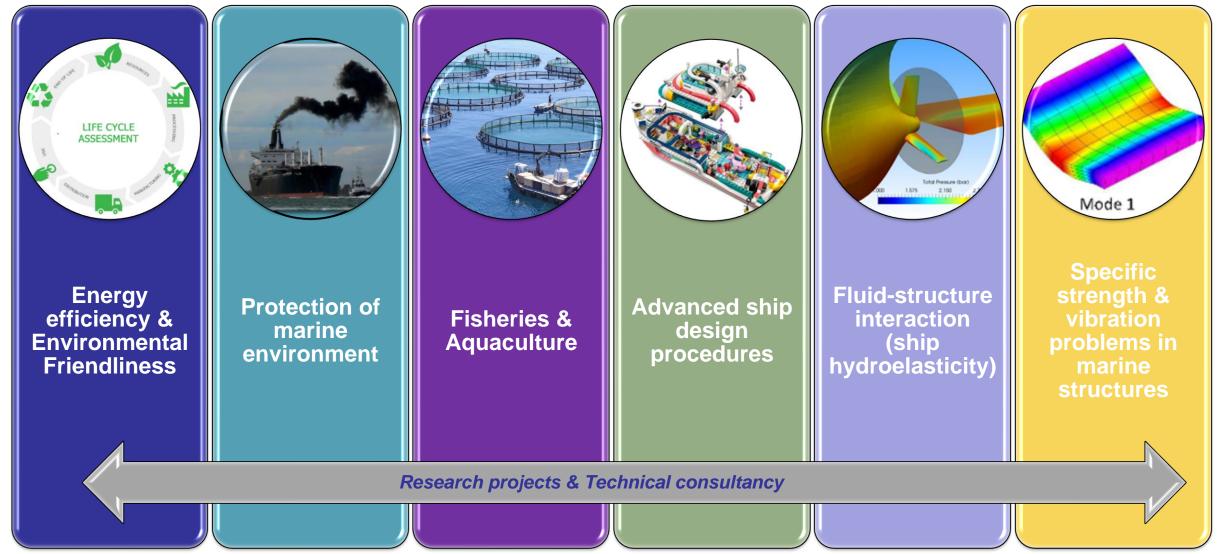
- ➢ Research group − 6 members
- > Number of projects focused on protection of marine environment
- Cooperation with the world's leading shipyards and ship owners

N. Vladimir

M. Perčić

M. Koričan

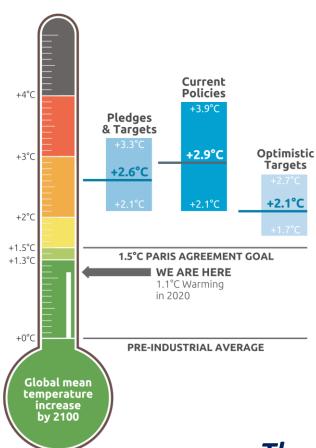
https://mareng.fsb.hr/


T. Bujas

M. Vukić

Selected research topics

Ongoing projects


- 11/2022 04/2026 Hybrid Tandem catalytic conversion process towards higher oxygenate E-fuels (E-TANDEM), HORIZON Europe Framework Programme.
- ✓ 08/2022 12/2023 *Hybrid ENergy System for fishing vessels (HENSUS)*, Research Project funded by the Croatian Ministry of Agriculture.
- 01/2022 12/2023 Research center for INTELligent, innovative, environmentally friendly, and sustainable MARICulture (INTEL MARIC), Research Project funded by the Croatian Ministry of Agriculture.
- 12/2020 12/2023 Improvement of High-Efficiency Welding Technology (ImproWE), granted by the European Regional Development Fund (ERDF), Operational programme Competitiveness and Cohesion 2014-2020, Priority axis: Strengthening the Economy through Research and Innovation.
- 09/2020 09/2023 Development of LNG System for the Ships Powered by Dual Fuel Engines (FO/LNG), granted by the European Regional Development Fund,
 Operational programme Competitiveness and Cohesion 2014-2020, Priority axis: Strengthening the Economy through Research and Innovation.
- ✓ 04/2020 03/2023 Sector Adaptive Virtual Early Warning System for Marine Pollution (SEAVIEWS), INTERREG ADRION.
- ✓ 01/2020 12/2022 Autonomous Auxiliary Fishing Vessel (APROPO), Research Project funded by the Croatian Ministry of Agriculture.
- 01/2020 12/2023 Energy Efficient and Environmentally Friendly Power System Options for Inland Green Ships, Croatian-Chinese Bilateral Project with Wuhan University of Technology, funded by Ministry of Science and Education of Croatia.
- ✓ 06/2020 12/2023 Network of fishermen and Scientists to Improve Energy Efficiency of Croatian Fishing Fleet (MORZ), Research Project funded by the Croatian Ministry of Agriculture.
- ✓ 03/2018 07/2023 Green Modular Passenger Vessel for Mediterranean (GRiMM), Croatian Science Foundation.

ENVIRONMENTAL PROBLEMS

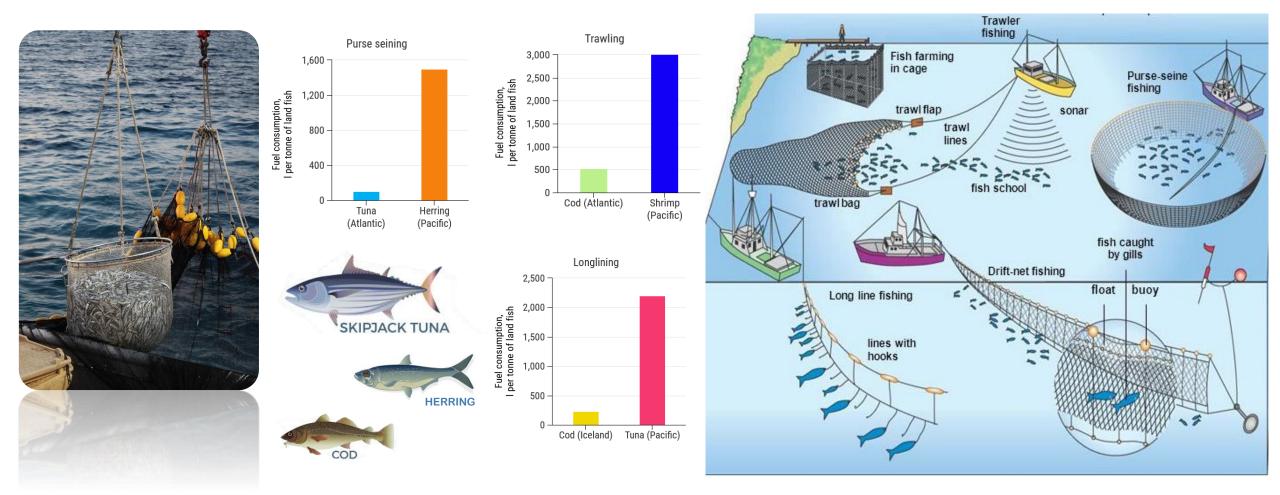
GLOBAL EMISSIONS

- Marine industry consumes cca. 330 million metric tons of marine fuel per year and 77% of it is Heavy Fuel Oil (HFO)
 - 33% of all emissions resulting from the burning of fossil fuels in trades
 - emissions are projected to rise with a 270% increase by 2050, compared to 2007
 - NOx emissions produced by marine vehicles are in range from 14 to 31%
 - SOx emissions are in range from 4% to 9%

Paris Agreement (2016)

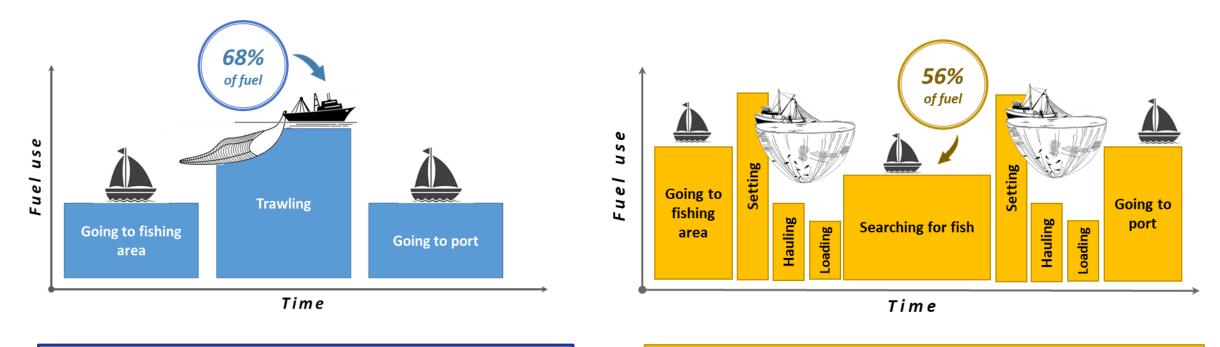
- aims to limit the increase in the global average temperature to well below 2°C, above preindustrial levels and to pursue efforts to limit the temperature increase to 1.5°C
- implementation entails economic, social and technical transformations in every sector, including maritime

Glasgow Climate Act (2021)


 reducing the gap between existing emission reduction plans and what is required to reduce emissions, so that the rise in the global average temperature can be limited to 1.5°C

The fishing sector accounts for approx. 179 million tonnes of CO_{2-equivalent} GHGs.

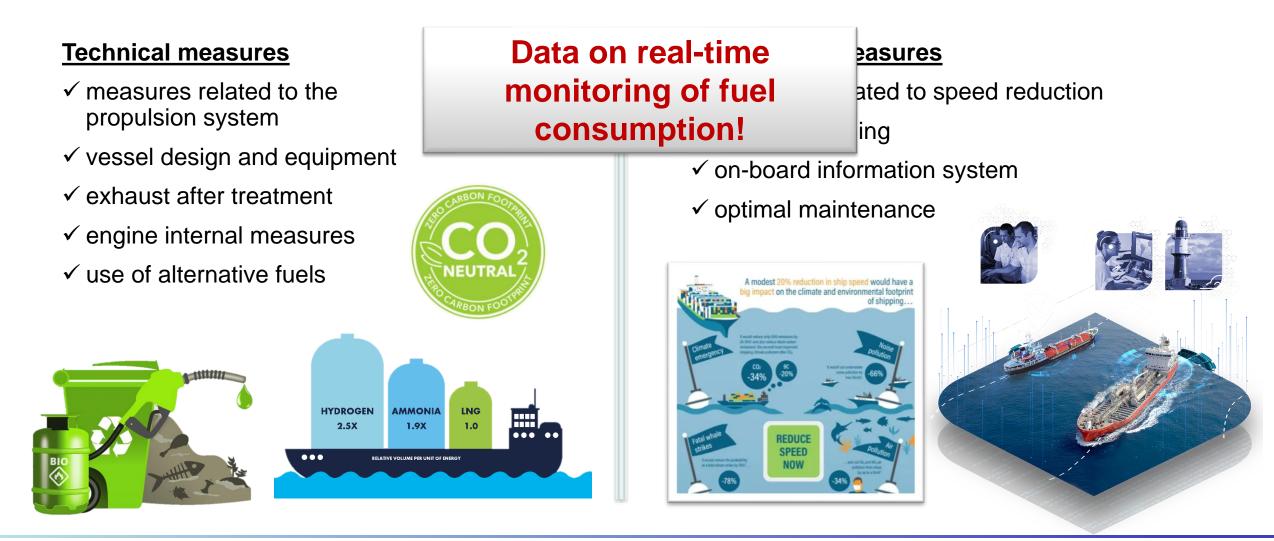
FISHERIES



- emissions are directly related to the energy consumption, which depends on the type of fishing vessel, type of fishing activity and fishing route
- significant factor in fuel consumption is also the type of caught fish

FISHING VESSELS

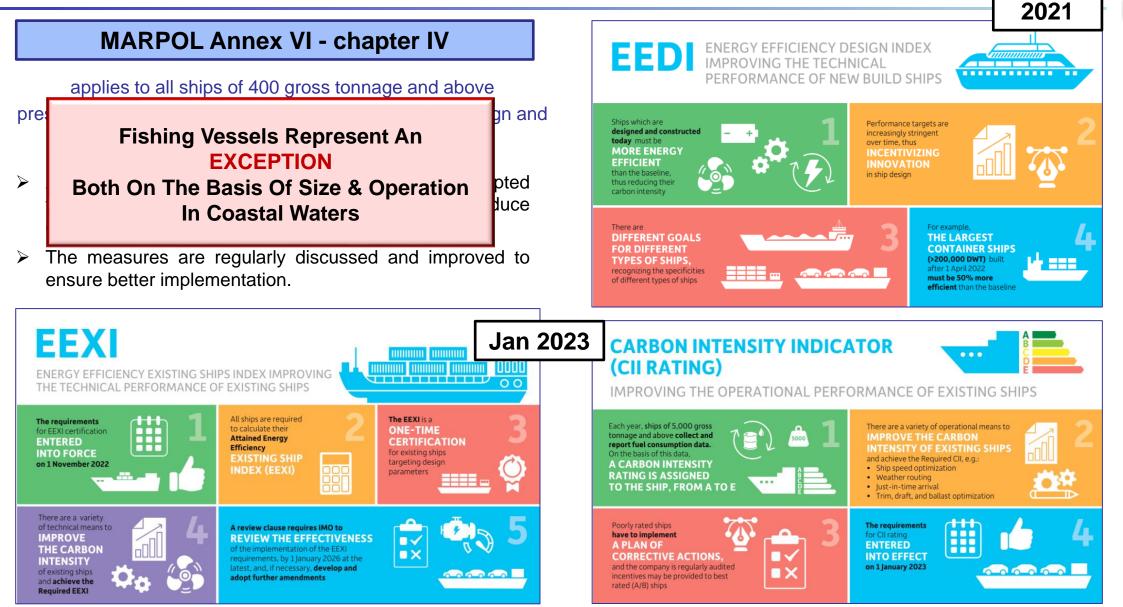
TRAWLERS


- the most fuel-demanding fishing vessels
- typical fishing actions inherent to trawlers are sailing to the required location and fishing, i.e. net dragging

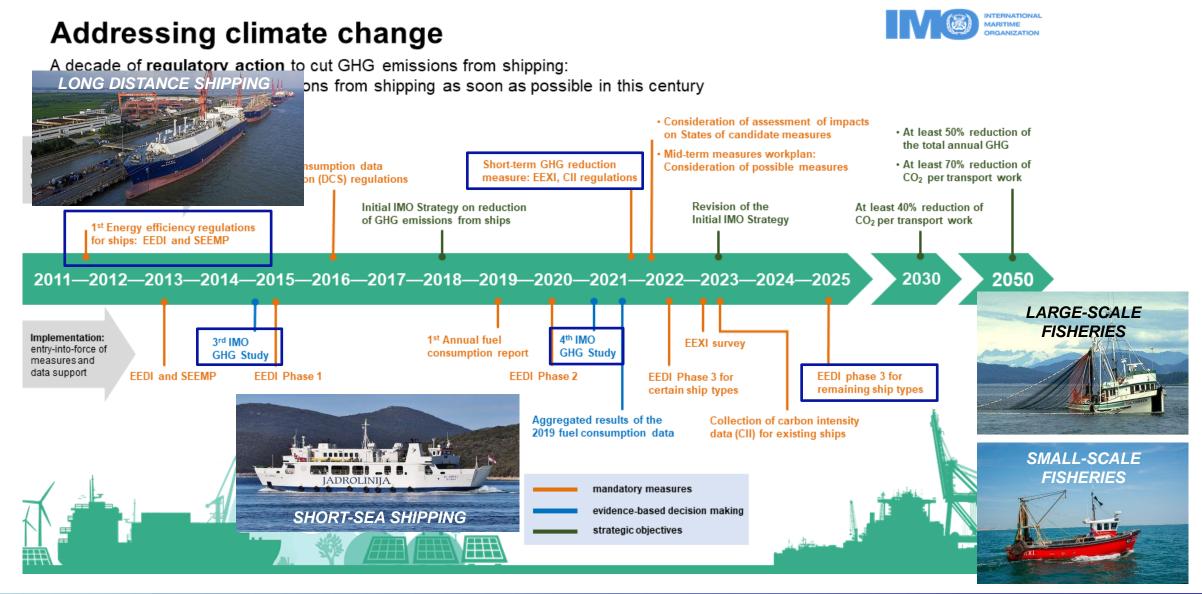
PURSE SEINERS

- dedicates more than half of total fuel consumption to cruising
- a lower average fuel usage than trawlers
- mainly used for catching small pelagic species

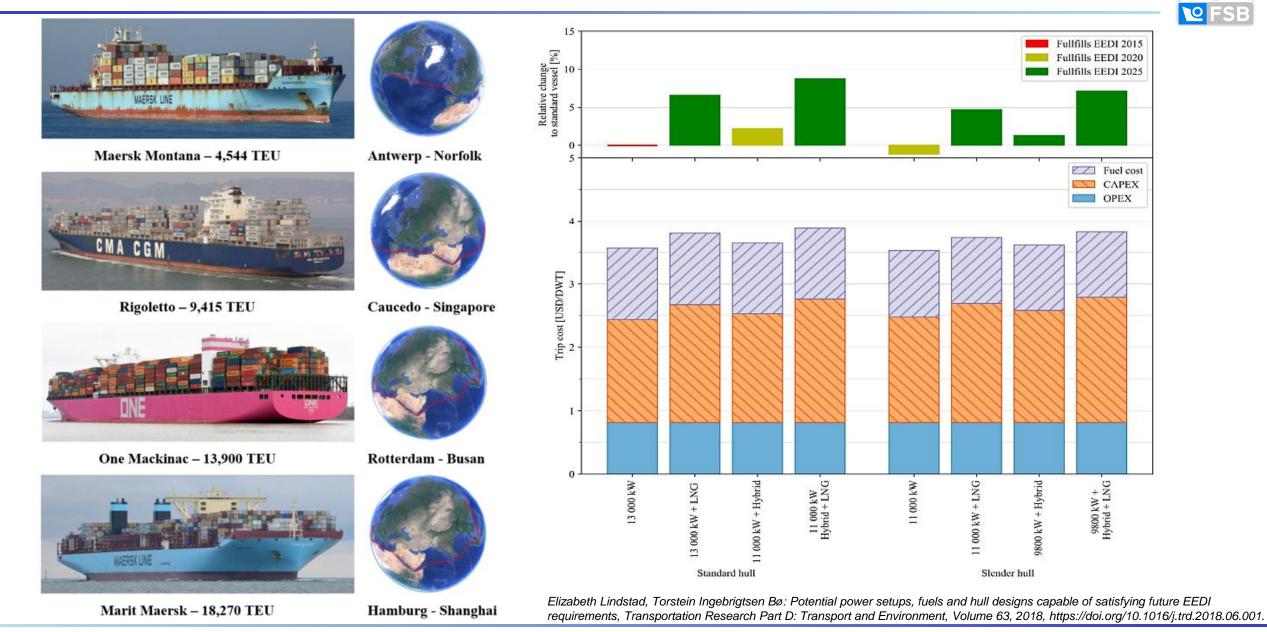
> IMO prescribes number of technical and operative measures to reduce environmental effect of shipping

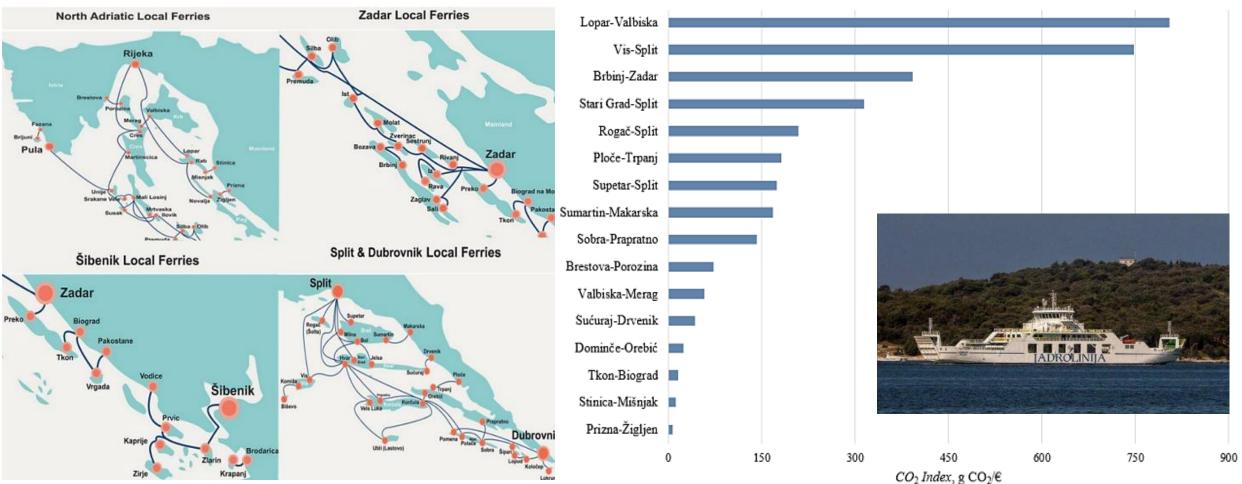


RESEARCH BACKGROUND

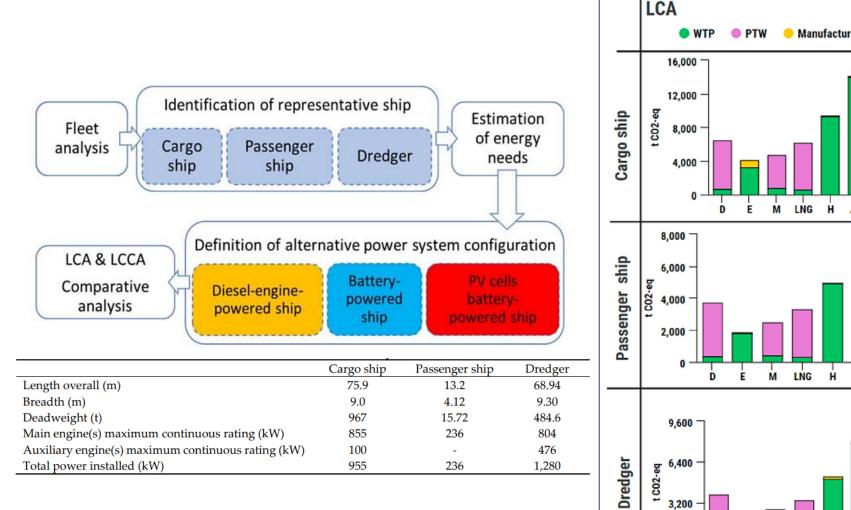


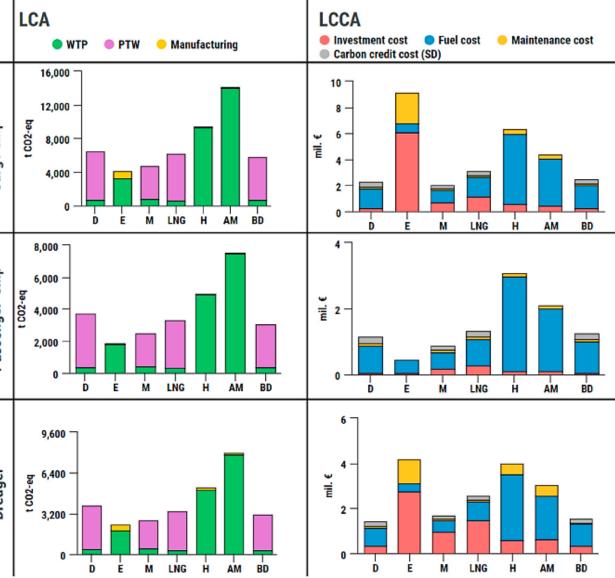
REGULATORY FRAMEWORK




LONG-DISTANCE SHIPPING

SHORT-SEA SHIPPING





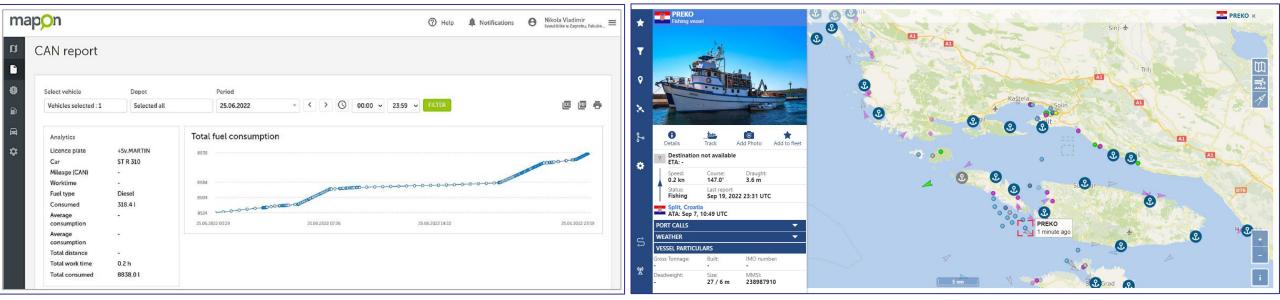
Same methods can be used to determine the energy efficiency and environmental footprint of fisheries.

INLAND WATERWAY SHIPS

INLAND WATERWAY SHIPS

- increase of ship energy efficiency
- reduction of fossil fuel consumption = reduction of ship CF
- achieved with a set of measures:
 - ✓ slow steaming
 - ✓ consumption of alternative fuel (hydrogen, lng, methanol, biofuels, etc.)
 - ✓ alternative power system configuration (hybrid power system, full electrification, fuel cells)
 - implementation of renewable energy resources for power generation on board (solar energy, wind energy)

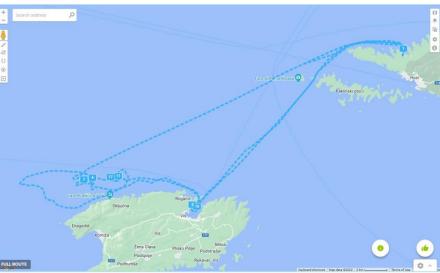
DATASET

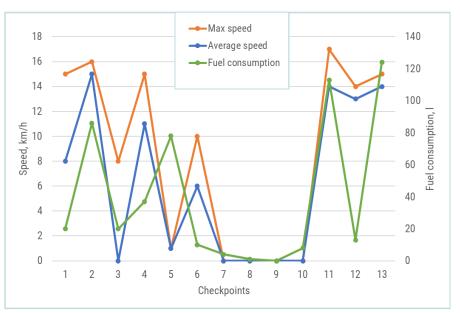


MEASUREMENT DATA

- Comparative base annual fuel consumption for the last 5 years (obtained from the Ministry of Agriculture, Directory of Fisheries, Croatia)
- ✓ Measurements
 - fuel consumption, average speed, GPS location, route history, workgraphs...
 - influencing factors weather conditions, route details, quality of catch...

AIS Applications




MAPON Software

MAPON Software

	PERIOD:		04.09.2022. – 05.09.2022.			
Checkpoint	Distance, km	Time travelling, h	Max speed, km/h	Average speed, km/h	Fuel consumption, I	
1	2.8	00:21	15	8	20	
2	20.7	01:24	16	15	86	
3	0.045	00:00	8	-	20	
4	10.6	00:55	15	11	37	
5	0.258	00:06	1	1	78	
6	2.2	00:21	10	6	10	
7	0.082	00:02	-	-	4	
8	0.135	00:01	-	-	1	
9	0.040	00:01	-	-	-	
10	0.032	00:03	-	-	8	
11	30.1	02:06	17	14	113	
12	2.5	00:11	14	13	13	
13	33.9	02:22	15	14	124	
TOTAL:	103.4	07:58:55	-	-	514	

MEASUREMENT DATA

BRILJANT ST R 269

S	Starting tir	ne From	End time	То	e compe	ns: Distance	Time Max spee	d Average s	Fuel consumption	CO2 emissions (I
+BRILJANT ((ST R 269	ə)								
09.08.2023										
1	17:20	D416 1, 20230, Broce, Croatia	19:58	MP67+7W Korita, Croatia	38,7	38,7	2:38:17 19 km/h	14 km/h	196.54 I	525280
2	20:24	MP58+9G Korita, Croatia	20:27	MP58+9G Korita, Croatia	0,287	0,287	0:02:15 -	-	17.99 l	45560
2	21:55	MP58+3C Korita, Croatia	21:57	MP58+3C Korita, Croatia	0,089	0,089	0:02:02 -	-	11.92 l	29480
2	22:56	MP48+XG Korita, Croatia	22:58	MP48+XG Korita, Croatia	0,039	0,039	0:01:18 -	-	8.05 I	21440
2	23:37	MP58+3C Korita, Croatia	23:38	MP58+3C Korita, Croatia	0,039	0,039	0:01:16 -	-	3.91 I	8040
2	23:56	MP58+5M Korita, Croatia	00:00	MP58+5M Korita, Croatia	0,029	0,029	0:03:02 -	-	1.57 l	2680
10.08.2023										
0	00:00	MP58+5M Korita, Croatia	00:05	MP58+9G Korita, Croatia	0,023	0,023	0:05:37 -	-	8.27 I	21440
C	00:40	MP58+5M Korita, Croatia	00:42	MP58+5M Korita, Croatia	0,042	0,042	0:02:32 -	-	14.44 I	37520
C	01:55	MP48+QV Korita, Croatia	02:21	MP48+78 Korita, Croatia	0,312	0,312	0:25:23 -	-	7.98 I	18760
C)2:32	MP48+78 Korita, Croatia	02:38	MP48+83 Korita, Croatia	0,060	0,060	0:06:53 -	-	2.83 I	5360
0	02:46	MP48+83 Korita, Croatia	02:47	MP48+83 Korita, Croatia	0,022	0,022	0:01:16 -	-	3.84 I	8040
C	03:06	MP48+83 Korita, Croatia	03:07	MP48+83 Korita, Croatia	0,027	0,027	0:01:15 -	-	0.96 I	
C	03:08	MP48+83 Korita, Croatia	03:11	MP48+83 Korita, Croatia	0,030	0,030	0:02:15 -	-	2.2	5360
C	03:19	MP48+83 Korita, Croatia	03:21	MP48+78 Korita, Croatia	0,051	0,051	0:01:11 -	-	5.25 I	13400
C	04:02	MP57+MC Korita, Croatia	11:38	QR3C+J3 Uble, Croatia	115,4	115,4	7:35:47 19 km/h	15 km/h	373.9 I	999640
					155,2	155,2	11:10:19		659.65 I	1742000
					155,2	155,2	11:10:19		659.65 I	1742000

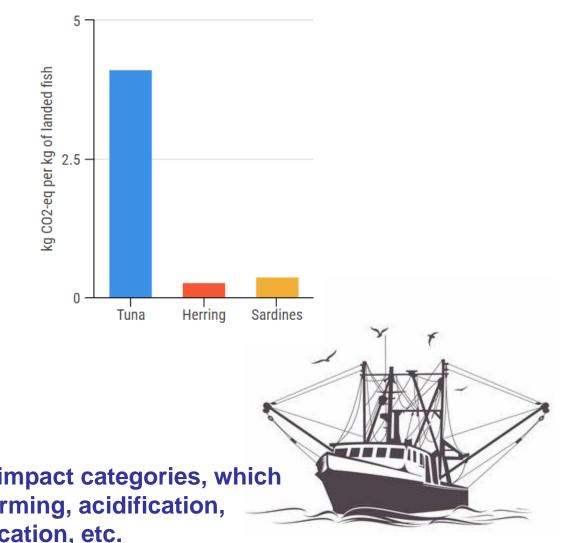
EMISSION INDEX

The specificity of the operational regime, the diversity of the fleet, influenced by the location of work, weather conditions, type of catch and the fact that it is a very traditional sector, measures that would be appropriate for the fishing part of the marine sector have not yet been adopted.

> CO2 index - calculated to analyse the socio-economic impact of the fishing operations

> represents a ratio of CO₂ emission per ton of cargo transported, in this case, land fish

$$CO_2 index = \frac{P_{eng} \cdot C_F \cdot SFC \cdot t}{Landed \ fish}$$


Peng – engine power, kW CF – conversion factor between FC and CO₂ emissions SFC – specific fuel consumption, kg of fuel per kWh

- the engine power has a significant impact on the end result
- high fuel consumption does not necessarily mean greater catch
- the reduction of engine power would have a significant impact on the environmental impact of the ship → fish species?

PS - 1							
Engine pow	er, kW	526					
Gross Tonna	age (GT)		96				
	Fuel consumption FC, kg per year						
2015	2016	2017	2018	2019			
57,351.0	57,423.7	47,315.8	69,638.9	56,119.8			
A	verage, kg per	year	57,569.8				
		Landed fish, kg per yea	r				
2015	2016	2017	2018	2019			
601,828.0	502,544.0	469,221.0	543,702.0	400,861.0			
A	verage, kg per	year	503,631.2				

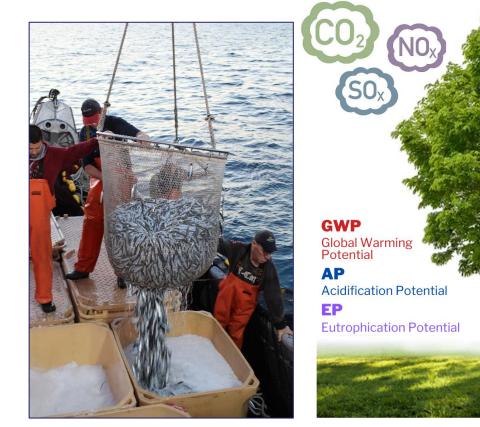
PS – 2						
Engine pow	ver, kW	221				
Gross Tonna	age (GT)		141			
	Fuel co	onsumption FC, kg pe	er year			
2015	2016	2017	2018	2019		
57,520.6	37,518.1	37,118.3	40,266.8	37,964.2		
A	verage, kg per y	ear	42.077.6			
	Li	anded fish, kg per yea	ar			
2015	2016	2017	2018	201977		
777,678	800,158.5	718,973.0	773,238.0	594,320.0		
A	verage, kg per y	ear	732.873.5	5		

- measures like EEDI and SEEMP adapted to different branches of fisheries
- herring and sardines type of small pelagic fish the emission of harmful gases is approximately the same
- purse seining tuna results in much greater fuel consumption compared to purse seining small pelagic species \rightarrow a great impact on the environment
- impact of NO_x and SO_x emissions should also be calculated in the index
- creating a better picture of the impact on the environment
- calculating the obtained income may show that tuna fishing is an economically and ecologically more acceptable option than the fishing of small pelagic species

EXTENDED EMISSION INDEX (EEI)

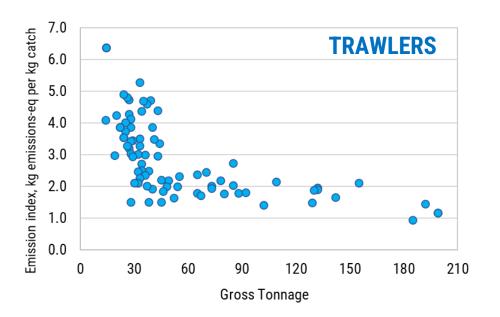
- assessment of the energy efficiency of fishing vessels \geq
- EEI gives an insight into the environmental impact in accordance with the benefit for society \geq
- it takes into account the global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP)
- benefit for society (BS) the estimated value on catch \succ

Emission index

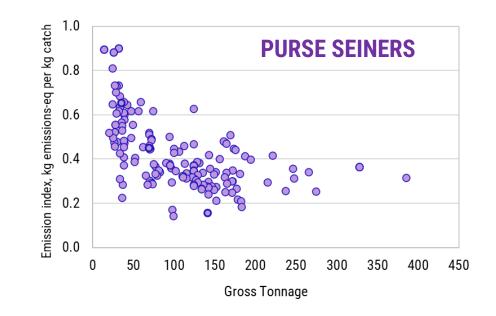

$$EEI = \frac{\alpha \cdot GWP + \beta \cdot AP + \gamma \cdot EP}{BS}$$

Different emissions:

$$GWP = 1 \cdot E_{CO2} + 36 \cdot E_{CH4} + 298 \cdot E_{N20},$$
$$AP = 1 \cdot E_{SOx} + 0.7 \cdot E_{NOx},$$
$$EP = 0.13 \cdot E_{NOx}.$$



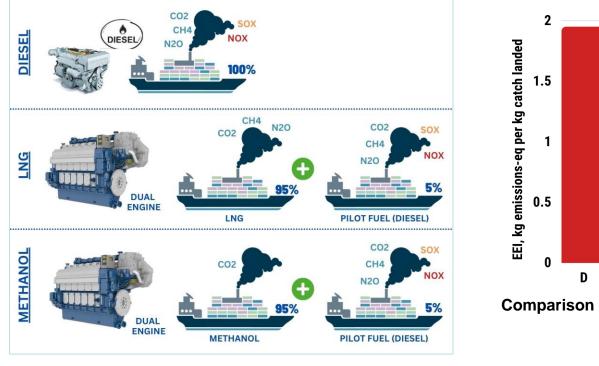
tailpipe emissions *Ei* depend on the type of the power system (diesel, LNG, RES, hydrogen...)

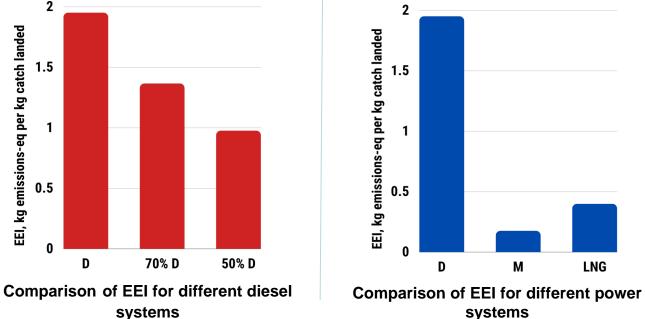


EXTENDED EMISSION INDEX (EEI)

- > evaluation of environmental friendliness of fishing vessels Croatian fishing fleet
- > 7,808 vessels (Ministry of Agriculture of the Republic of Croatia)
- "General Fisheries Commission for the Mediterranean" database 163 purse seiners and 82 single-boat bottom otter trawlers

- ✓ higher emission index values than purse seiners
- ✓ average power of the trawl engine is lower than that of purse seiners




✓ higher values belong to vessels with a lower GT

EXTENDED EMISSION INDEX (EEI)

- > calculation was performed for one purse seiner operating in the Adriatic Sea
- > data on operational characteristics were obtained by direct monitoring of the selected purse seiner

replacing traditional diesel with LNG or methanol significantly reduced the EEI values due to lower SOx and NOx emissions

ZERO

GOAL --->

DECARBONIZATION

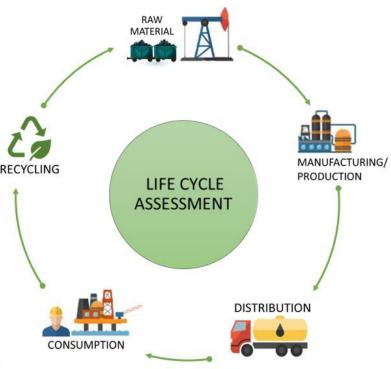
LIFE-CYCLE ASSESSMENTS (LCA)

FSB

- LCA investigates the environmental aspects and potential impacts throughout a product's life
- focused on the emission released throughout its life-cycle

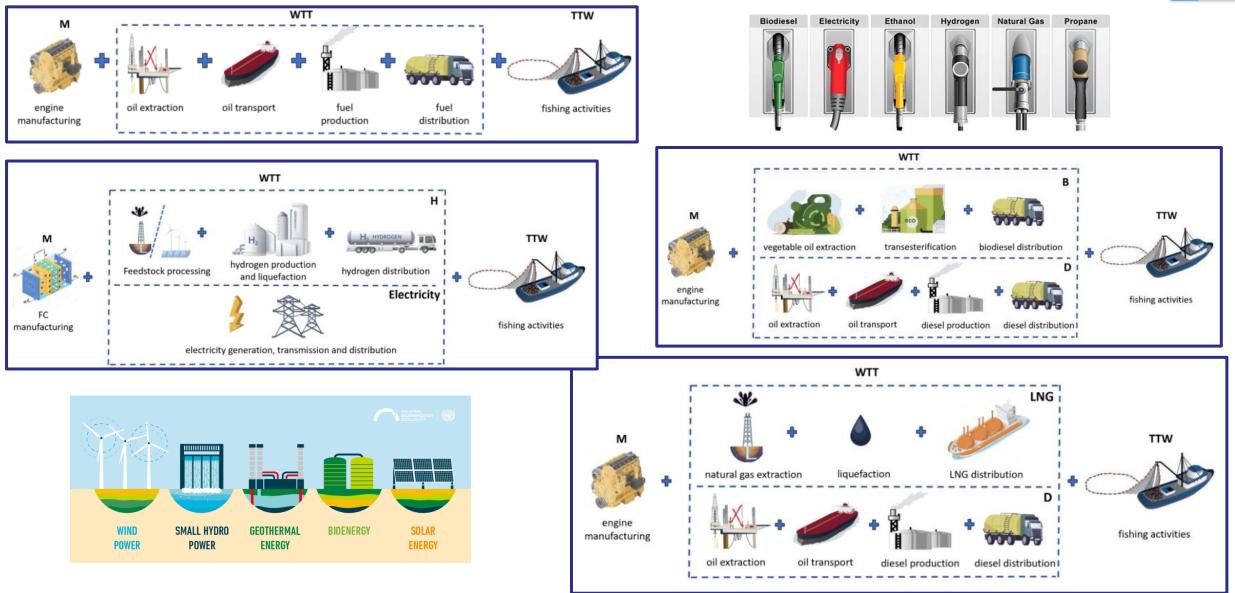
I. WTP (Well-to-Pump) phase

analyses the fuel cycle – from the extraction of raw material, production of fuel and transport to the refuelling station


II. PTW (Pump-to-Wake) phase

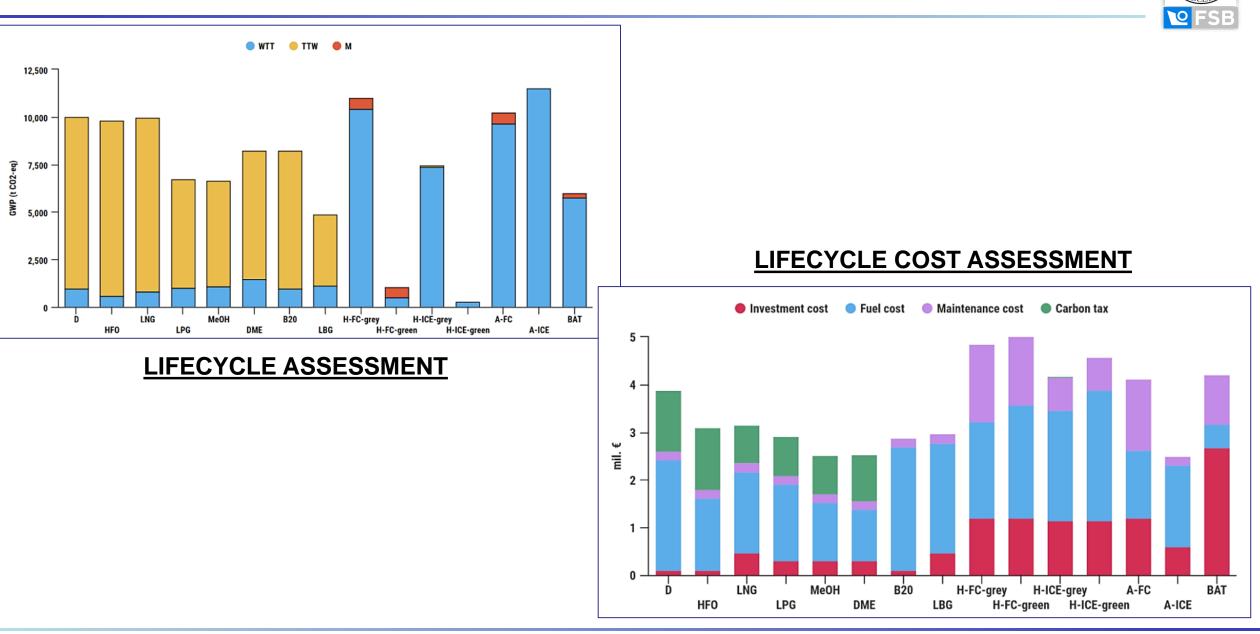
analyses the fuel usage in a power system that causes tailpipe emissions (TE)

III. Manufacturing phase


analyses the manufacturing process of the main elements in a power system

LIFE-CYCLE ASSESSMENTS (LCA)

LIFE-CYCLE COST ASSESSMENTS (LCCA)



CARBON TAXES

- SPS: current policies and today's policy intentions and targets for the EU
- APS: advanced economies with net zero emissions pledges
- NZES: advanced economies with net zero emissions pledges

LIFE-CYCLE ASSESSMENTS (LCA)

ELECTRIFICATION & RES

DEMAND

- FUEL DEMAND OF THE FIS
- Arrival and departure patte
- Occupancy of the berth at
- Power demand of the selection
- Operation profiles through
- Fuel demand of the fishing

ELECTRICITY DEMAND OF

- Arrival and departure patter
 Occupancy of the berth at
- (number of fishing vessels
- The electricity demand of t
- Operation profiles through
- Hourly electricity deman

DEMAND

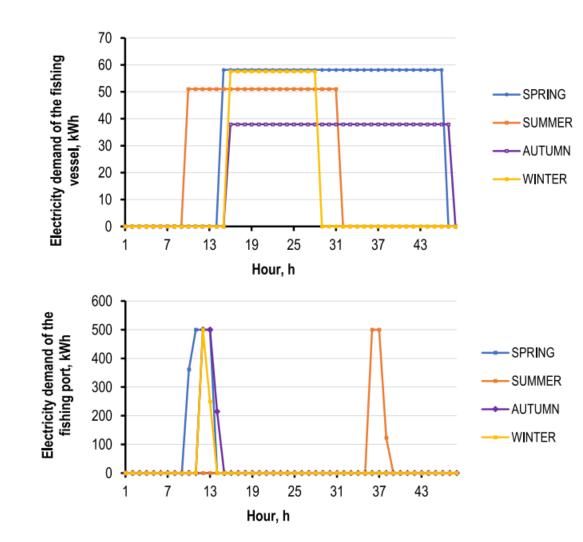
ELECTRICITY DEMAND O

- Substation measurements
- Hourly electricity demand

SUPPLY

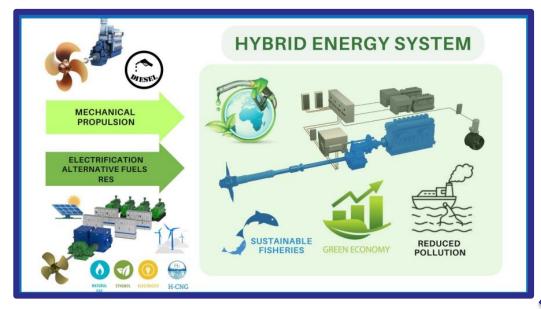
VARIABLE RENEWABLE

- · Photovoltaic (PV) powe
- Hourly solar irradiation m
- Predicted future PV powe
- Hourly PV production dist


TECHNOLOGY COST

- Variable Operation
- Fixed Operation
- Investment
- Interest Rate

ELECTRIFICATION



• Electricity consumption of the fishing vessel and electricity demand of the fishing port for each operation profile

Scenario no.	Scenario name	Electricity demand of the island, GWh/year	Fuel demand of the fishing vessels, GWh/ year	Electricity demand of the electric fishing vessels, GWh/year	Installed capacity of the PV unit, MW
S1	Business as usual (10 ships)	17.01	2.90	0	21
S2	Electrification (10 ships)	17.01	0	1.65	21
S3	Business as usual (20 ships)	17.01	5.79	0	21
S4	Electrification (20 ships)	17.01	0	3.31	21
S5	Business as usual (30 ship)	17.01	8.69	0	21
S6	Electrification (30 ships)	17.01	0	4.96	21

HYBRID ENERGY SYSTEM FOR FISHING VESSELS

- MAIN OBJECTIVE -

Develop a computer application for initial design of hybrid power systems for fishing vessels to achieve higher energy efficiency, environmental friendliness, lower fuel consumption, and reduced life cycle costs compared to existing diesel engine solutions.

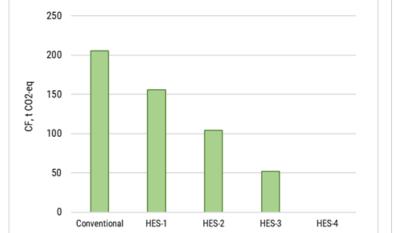
Types of Alternative Fuels	CO ₂ Emissions Reductions
LNG	0–20%
Ammonia	0–100%
Biofuels	25–100%
Hydrogen	0–100%
Fuel cells	2–20%
Wind	1–32%
Solar	0–12%
Nuclear	0–100%
Electricity	0–100%

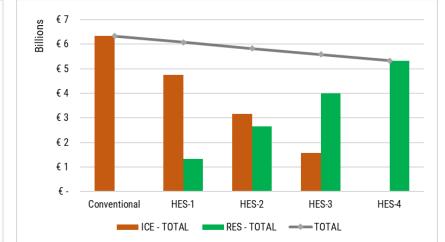
CHALLENGES

- !! Complicated design process due to multiple technical, operative, and market-based measures.
 - Environmentally friendly options are often expensive, especially in the context of the fishing fleet with old and low-efficient engines.

FULL ELECTRIFICATION?

HYBRID ENERGY SYSTEM FOR FISHING VESSELS





PROFITABILITY?

ENVIRONMENTAL IMPACT? BENEFIT FOR SOCIETY?

	Conventional	HES-1	HES-2	HES-3	HES-4
Share of ICE	100%	75%	50%	25%	0%
Share of RES	0%	25%	50%	75%	100%
Battery storage	NO	YES	YES	YES	YES

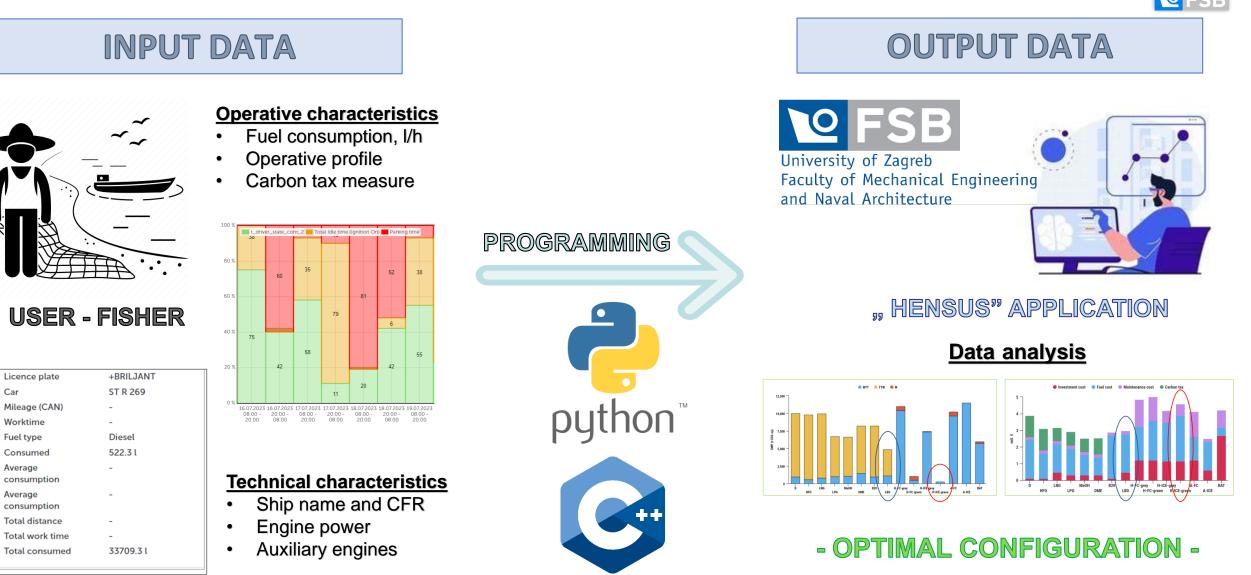
BATTERY

- ✓ depending on the energy mix of country
- ✓ CO₂ emissions reduced, lower NOx emissions
- PTW emissions eliminated
- different technologies to increase holding capacities, freezing technology, improvements in locating devices...
- LED lights advantages such as radiation spectrum, and correlated colour temperature, decreased fuel consumption

SOFTWARE "HENSUS"

SOFTWARE "HENSUS"

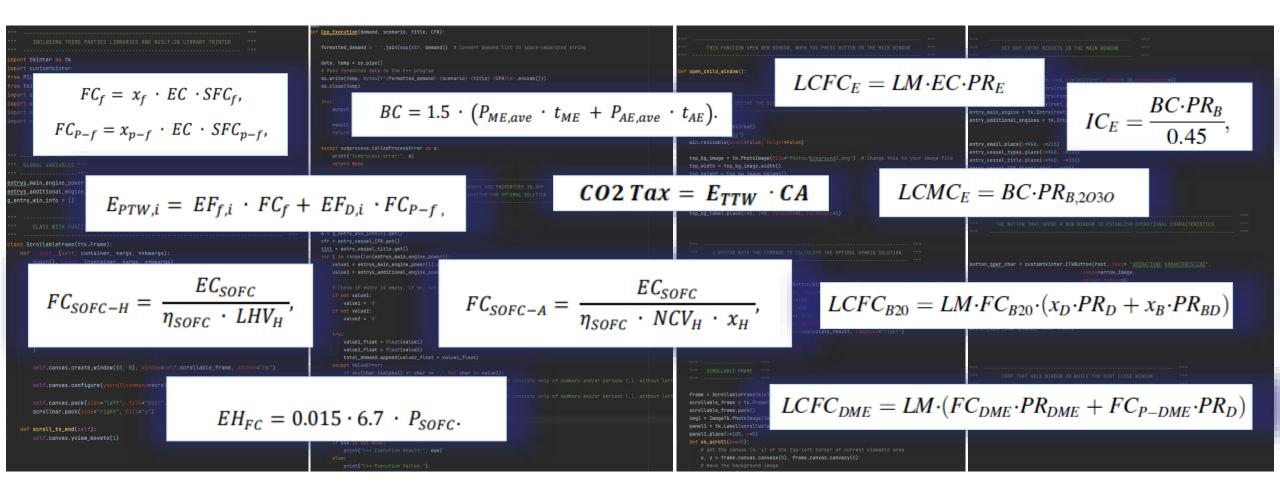
Car


Worktime

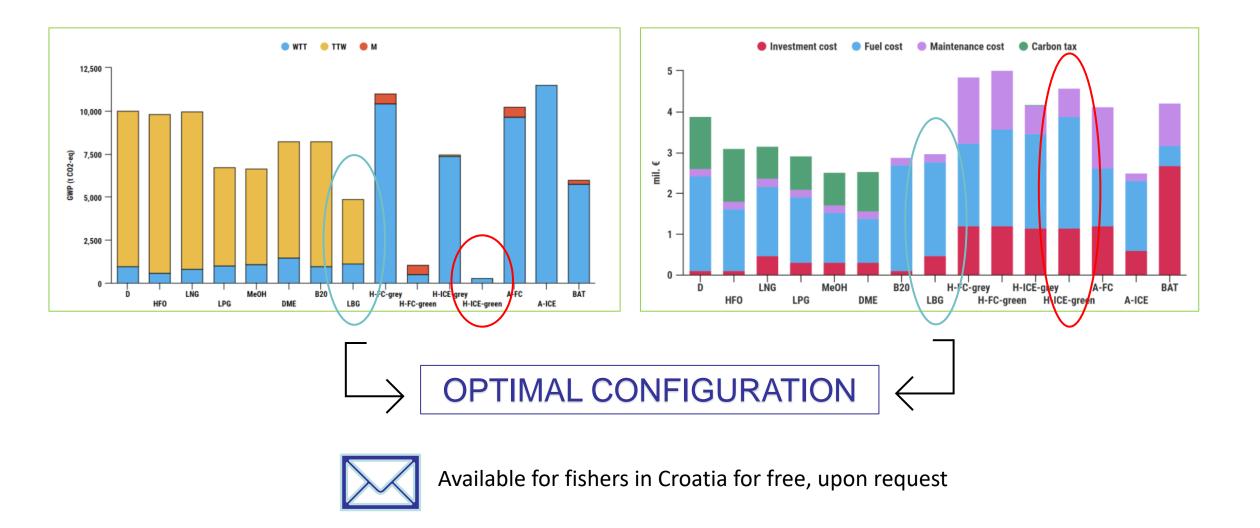
Fuel type

Average

Average



SOFTWARE "HENSUS"


 Includes all input data and equations needed to assess the released emissions of different power systems and cost of their implementation

CHAIR OF MARINE ENGINEERING Laboratory of Marine Engineering

https://mareng.fsb.hr/

Thank You for Your Attention!

This investigation has been co-funded by the European Maritime and Fisheries Fund of the European Union within the project "Hybrid Energy Systems for fishing vessels – HENSUS," granted by the Ministry of Agriculture, Directorate of Fisheries, Republic of Croatia (Award No. 324-01/21-01/2273).

Sufinancirano sredstvima Europske unije iz Europskog fonda za pomorstvo i ribarstvo